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We study the budding dynamics of individual domains in flat, multicomponent membranes using dissipative
particle dynamics (DPD) simulations with varied bead numberN, in which addition and deletion of beads
based on their density at the membrane boundary is introduced. The budding process of a tubular bud,
accompanied by a dynamical transition reflected in the energy and morphology evolutions, is investigated.
The simulations show that budding duration is shortened with increasing line tension and depends on the
domain size quadratically. At low line tension, increasing bending modulus accelerates budding at first, but
suppresses the process as it increases further. In addition, the controlling role of the surface tension in the
budding process is also explored. Finally, we use theN-varied DPD to simulate the experimentally observed
multicomponent tubular vesicles, and the three bud growth modes are confirmed.

I. Introduction

Fission events occur frequently in various cellular processes,
such as endo- or exocytosis, protein trafficking, and fertilization,
and budding is the inevitable intermediate in the production of
transport vesicles which shuttle between different cellular
compartments.1 Despite the strict modulation of lipid composi-
tion and the protein involvement in real biological membranes,2-3

multicomponent protein-free lipid vesicles which possess in-
trinsic fluid characteristics and intramembrane domains are
sufficient to reproduce budding and fission courses, serving as
an excellent model to study the structure and function of cell
membranes. In addition to the theoretical prediction that a flat
domain without protein modulation can deform into a third
dimension as it grows beyond a certain size,4-8 recent experi-
ments have also reported artificial vesicles9-12 composed of
lipids and cholesterol undergo shape transformations and
topological changes similar to the in vivo observations.

Treating lipid membranes as a smooth, elastic surface with
energies contributed from the membrane surface tension, the
bending elasticity, and the line tension between components of
lipids,13-14 we find that many continuum models have exten-
sively examined the equilibrium morphologies of vesicles and
domains with varied compositions or under different force
fields.15-17 In a phase-separated membrane, budding or invagi-
nation are predicted as the direct results of the competition
between the line tension and the membrane rigidity.4-5,17 To
investigate the dynamics of these shape transitions, several
Monte Carlo (MC) simulations6,18-19 combining dynamic
triangulation were recently conducted and showed that the entire
budding process can be divided into distinct time regimes. Later,
Yamamoto et al.20-21 and Laradji and Kumar7-8 adopted a
dissipative particle dynamics (DPD) method to simulate ve-
sicular budding, taking into account the hydrodynamic interac-
tions and area-to-volume ratio constraint. Particularly, the latter
clarified the scaling laws involved in Brownian motion and the

coalescence between domains or buds and related the onset time
and size of domain budding to the elastic membrane properties.

However, there are still unremarked points, including (1)
morphology changes from an individual domain to a bud, then
to a vesicle, (2) that the smallness of the chosen system assigns
considerable initial curvature to the domains before budding,
whereas the domains are nearly flat on experimental giant
unilamellar vesicles (GUV),10-12 (3) that simulated surface
tension increases dramatically as budding proceeds, contrary
to the case of GUVs where surface tension maintains almost
unvaried when a single domain bends up and buds off, and (4)
relations between budding dynamics and elastic properties,
especially the surface tension. A flat open membrane, mimicking
a small patch from a giant vesicle, seems a plausible approach
to clarify these problems. Still, the barriers are existent. They
lie in the facts that the membrane patch model in canonical
ensemble, where the geometry of buds are easy to measure and
the elastic parameters are convenient to control, lacks the excess
area necessary for budding;7-8,18 however, on the other side, it
is difficult to analyze surface tension, bud morphology, and so
forth in the aggregates like vesicles, tubes, and rods where
budding and fission can occur naturally. Thus, in this paper,
we use the DPD method, with the hydrodynamic interactions
involved, to simulate the budding process on a membrane patch,
and further impose modified boundary conditions to a flat
membrane patch to make the molecular number variable to deal
with the abovementioned challenges.

Dissipative particle dynamics is a coarse-grained technique,
first introduced by Hoogerbrugge and Koelman to describe the
mesoscopic hydrodynamic behaviors of complex fluids. It is
based on the interaction of soft beads, each of which corresponds
to a group of several atoms. Therefore, it is able to handle much
larger system sizes and time scales than atomistic simulations
and, at the same time, keeps the basic chemical traits compared
with continuum models. The technique is especially suitable to
model equilibrium structures22-27 and aggregation dynam-
ics7,8,20,21,27,28of the systems composed of amphiphilic mol-
ecules. Many simulations of amphiphilic monolayer and bilayer
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patches have been conducted to gain insight into the molecular
dependence of the elastic parameters such as bending modu-
lus,24,25 stretching modulus,22 and normal and lateral stress
distribution.22,23,26 Some of the abovementioned budding and
fission21 and domain growth dynamics7-8 have also been studied
by the DPD method starting from the self-assembled fluid
vesicles. Built on normal DPD,N-varied DPD which we
introduce here is designed to simulate the open lipid membranes.
We alter the boundary conditions in the simulation box through
adding and deleting DPD beads according to the local density
close to the boundary to make the bead numberN variable.
Hence,N-varied DPD allows the bilayer patch to stretch and
contract, providing the excess area indispensable in membrane
budding and fission.

The paper is organized as follows: section II presents the
simulation details and the validation ofN-varied DPD; in section
III, we display the shape transform of a typical budding and
fission process of an individual domain, and analyze the effects
of bending modulus, surface tension, and line tension on the
dynamics. As an extension of the application ofN-varied DPD,
we simulate three bud growth modes observed experimentally
and discuss the stability of intermediate tubular bud thereafter.
Finally, we summarize in section IV.

II. Model
A. Normal DPD. Normal DPD simulates the canonical

ensemble with a constant number of beads, constant volume,
and constant temperature.29,30Each bead in the system represents
an interaction site lumped by groups of atoms. The total
forces30,31imposing on each bead includes its direct conservative
interaction with other beadsFi

C and two other pairwise terms,
dissipative forceFij

D and random forceFij
R. The trajectory of

the system is evolved by integrating Newton’s laws of motion:

The vector positionr i, the velocityvi, and the massmi define
each DPD bead, with the assumption that all beads have the
same massmi ) m0.

Though we modify the boundary conditions and make the
bead number variable inN-varied DPD, the evolution law and
the force field in the new model remain the same as those in
normal DPD. The three kinds of forces31 take the following
form:

γij is the strength of the dissipation between beadi,j andvij )
vi - vj, rij ) |r ij|, eij ) (r i - r j)/rij. T represents the temperature
andkB is the Boltzmann constant.Fi

C is expressed in the form
of a gradient of the potentialsΦi involving beadi. Both Fij

D

andFij
R are limited to a rangerc. By keeping the mean diffusion

as a constant, for example, independent of the time step of the

integration, Groot and Warren31 derived the factor dt-1/2 in eq
4. The randomness ofFij

R is contained in the uniform random
variableêij(t) , which generates elements that are independent
for each pair of beads and for each time step, and has zero mean
and unit standard deviation:

In the previous simulations of the lipid membrane,22-26 three
types of potentialsæ1, æ2, andæ3, all of which are components
of Φi, are conventionally chosen to model the conservative
interactions of beadi with its neighbors. Nonbonded beads repel
softly against each other with the soft repulsion potentialæ1-
(i,j) cut off at the distancerc:

whereaij is the maximum repulsion between beadsi andj. Beads
within the same lipid are connected together through harmonic
spring potentials:

wherekb is the spring coefficient andrb is the equilibrium bond
length. For semiflexible surfactants or lipids with more than
one tail, additional three-body chain stiffness potentials are
needed to help construct the complicated molecular architec-
tures:

wherekc is the chain modulus, and the angleθi is defined by
the scalar product of the two vectors pointing fromi - 1 to i
and from i to i + 1, respectively. The spontaneous angleθi

sp

are usuallly set to zero for the linear lipids but occasionally are
set to a finite value to build a triple with a preferred tilt angle.

In our model, one water bead stands for approximately three
water molecules, and a simple surfactant architecture of HT3 is
considered to model the lipid, where H and T stand for the
hydrophilic head bead and hydrophobic tail bead, respectively.
Although many previous researches have investigated the static
properties of the bilayer membrane composed of the lipids with
longer chains or more than one tail, few DPD simulations have
ever employed these complex molecules to study the dynamic
behaviors of the lipid aggregates because of the heavy compu-
tational load involved in diminishing the effect of the membrane
thickness for longer molecules. Thus, our simulation is con-
ducted on as simple molecular architecture as possible.

We set the parameters in the conservative force as follows:

where W, H, and T represent the water bead, the head bead
and the tail bead, respectively, and the subscripts A and B stand
for two kinds of lipids. We vary the parametera in eq 9 to
model the role played by the interfacial line tension between
lipid components A and B. It is necessary to point out that the

êij(t) ) 0 êij(t)êkl(t′) ) δ(t - t′)(δikδjl + δilδjk) (5)

æ1(i,j) ) {1
2
aij(1 -

rij

rc
)2

rij < rc

0 rij g rc
} (6)

æ2(i,i + 1) ) 1
2
kb(rb- ri,i+1)

2 (7)

æ3(i - 1,i,i + 1) ) kc[1 - cos(θi - θi
sp)] (8)

aij )
kBT

rc ( W HA TA HB TB

W 25 25 75 25 75
HA 25 25 75 a 75
TA 75 75 25 75 a
HB 25 a 75 25 75
TB 75 75 a 75 25

) (9)

dr i

dt
) vi

m0

dvi

dt
) Fi

C + ∑
j*i

(Fij
D + Fij

R) (1)

Fi
C ) -

∂Φi

∂r i
(2)

Fij
D ) {-γij(1 - rij/rc)

2(eij‚vij)eij
rij < rc

0 rij g rc
(3)

Fij
R ) {x2γijkBT(1 - rij/rc)êijdt-1/2eij

rij < rc

0 rij g rc
(4)
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relation ofaWH > aHH in some early studies22,23of the membrane
equilibrium structures would easily lead to unphysical phenom-
ena like crinkling, clustering of lipid heads, burial of the head
clusters into the membrane bulk, and so forth when the
membrane transforms significantly, since these behaviors sub-
stitute the less repulsive H-H pairs for stronger W-H ones and
reduces the total energy. Thus,aWH and aHH are fixed at the
same value in our simulation.

The dissipation strengthγij is set atγij ) 20[(kBT)m0/rc
2]1/2

for hydrophobic interactions (water-tail, head-tail) and
4.5[(kBT)m0/rc

2]1/2 for others.22-23 The introduction of different
γij values helps to enhance the efficiency of the thermostat in a
system where the presence of chain stiffness potential (eq 8)
intensifies the bead collision and consequently raises the
temperature. The spring and the chain stiffness parameters have
the valueskb ) 128kBT/rc

2, rb ) 0.5rc, andθi
sp ) 0. Similar to

a in eq 9, differentkc’s are chosen for lipids with different chain
moduli, which result in different membrane bending moduliκ.
The values ofm0, rc, andkBT are assigned as unit.

Finally, The equations of motion are integrated by a self-
consistent leapfrog scheme proposed by Pagonabarraga et al.,32

with a time step∆t equal to 0.05[m0rc
2/(kBT)]1/2. The scheme

is reported to display better time reversibility and temperature-
conserving efficiency than the widely used VV-style algo-
rithms.33

B. N-Varied DPD. Two kinds of tensions are present in our
simulation. One is called surface tension, measuring the stress
anisotropy induced by the membrane-water interactions.22,34

The other tension rises from the incompatibility between the
coexisting lipid components and exists around the domain which
consists of lipids that differ from those composing the mother
membrane. We denote it as line tension hereafter.

In normal DPD, the conservation of lipid number in the
membrane will bring in increasing surface tension when the
flat membrane patch bends up. So, unlike the case of some
closed aggregates whose large area-to-volume ratio offers
sufficient excess area to release the tension, large deformations,
for example, budding and fission, are prohibited in theN-
invariant simulation of the flat membrane patches. There are
two other candidate techniques probably available for the excess
area supplement. One is a constant surface tension simulation24

in which the system remains to be NVT (canonical) ensemble.
However, the membrane bumps up and even experiences topo-
logical changes as budding proceeds. Hence, calculation of the
surface tension using the Kirkwood equation34 which is specially
designed for a flat surface in a bead-based system becomes

invalid. No implementable method has ever been derived to
determine the surface tension of a curved surface consist of
interacting beads. The other technique is to make the simulation
box an open system to the matter exchange with its environment.
It is believed that living cells keep lipid reservoirs at a fixed
chemical potential to maintain the surface tension of most of
their membranes at a constant level.1 Thus, an application of a
grand canonical ensemble seems to be a natural solution. In
practice, however, the heterogeneous boundary and the dynamic
nature make the calculation of the instant chemical potential
profiles rather time-consuming and statistically not precise.

Therefore, instead of the chemical potential criteria, we
propose the density criteria by which the entering or leaving of
a molecule is determined. In essence, new lipid molecules are
added to a boundary position where the local density of the
membrane is less than a predefined bottom value, and a few
lipid molecules should be deleted when the local boundary
density exceeds the upper ceiling. The treatment for water is
similar. Since the chemical potential is a monotonic function
of density, it is actually an indirect but convenient approach to
maintain the local boundary chemical potential fixed. Figure
1a shows the boundary conditions inN-varied DPD.

Note that we put the prefix “quasi-” before the phrase
“periodic boundary condition” for the box sides perpendicular
to the membrane plane. The condition resembles the standard
periodic boundary conditions,35 on the one hand, in that if a
bead leaves the box then it should be replaced by an image
bead that enters from the opposite side. On the other hand, it
differs from the latter whenever a sparsely populated region
appears in the vicinity of the membrane boundary, then
additional lipid molecules are inserted. Similarly, whenever a
densely populated region occurs near the membrane boundary,
lipid molecules are deleted. The condition for water beads is
similar. For the box sides parallel with the membrane plane,
we place a 2rc-thick layer of immobile water beads to model
the solid boundary conditions. The solid walls ensure the
pressures exerted on both the membrane sides to be transferred
only through the bilayer. We further impose reflection of the
beads at the solid boundary:35

Figure 1. Single-component membrane patches inN-varied DPD. (a) Boundary conditions inN-varied DPD in which the bilayer membrane is
arranged perpendicular to thez axis. “Quasi-periodic boundary condition”, which combines both the standard periodic boundary condition and the
addition and deletion of beads, is imposed on the box sides perpendicular to the membrane plane; “solid boundary condition” includes two 2rc-thick
layers of immobile water beads and specular reflection for beads that cross the wall positions. (b) Snapshots of a bilayer membrane patch composed
of 2492 lipids in a 32× 32 × 36rc

3 simulation box, where UCDL) 2.19 lipids/rc
2, LCDL ) 0.44 lipids/rc

2, andkc ) 3.0kBT.

if zi(t + ∆t) < 0 thenzi(t + ∆t) ) -zi(t + ∆t),

Vi,z(t + ∆t) ) -Vi,z(t + ∆t)

if zi(t + ∆t) > Lz thenzi(t + ∆t) ) 2Lz -zi(t + ∆t),

Vi,z(t + ∆t) ) -Vi,z(t + ∆t) (10)
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zi andVi,z are thez components of the position and the velocity
of beadi, respectively.Lz stands for the box dimension in the
z direction (not including the two 2rc-thick layers of frozen
water).

In implementation of the density criteria, the water phase and
the lipid phase are dealt with separately. We get the local water
density of anrc

3-volumed cubic by averaging the total number
of water beads in its neighboring region over the region volume
27rc

3. As for the lipid phase which takes on an almost flat fluid
membrane around the box sides, the area density calculated
within an rc

2-sized projected area is adopted instead. Because
of the region size selected above, addition or deletion of one
water bead or one whole lipid molecule in the specific region
each time step is enough to drive the local density back into a
defined value. The momentum of a newly added bead is
assigned from a Gaussian distribution with zero mean and
(kBT)1/2 variance.

The upper critical density of water (UCDW) above which a
water bead should be deleted from the box is set 3.5rc

-3, and
the lower critical density of water (LCDW) below which an
addition operation is needed equals 2.5rc

-3. The chosen UCDW
and LCDW ensure the average density for a pure water system
be brought along to a fluctuating value that is not far deviated
from 3.0rc

-3, no matter whether the system is initialized with
overflowing water beads or deficient. On the other end, they
are not so close to each other to raise the temperature by the
frequent adding and deleting operations. The system temperature
fluctuates within 1%, as conserved as that of normal DPD. As
for the lipid phase, we find the upper and lower critical densities
of lipids (UCDL and LCDL, respectively) directly set the
average projected area per lipid throughout the membrane,
therefore tightly related to the surface tension, which means
the statistical ensemble ofN-varied DPD is a variant ofµVT
ensemble (or correspondingly, constant surface tension en-
semble). In fact, the upper critical density (UCD) and lower
critical density (LCD) uniquely define an average density of
each phase, which further sets a fixed chemical potential for

both lipids and water, or a fixed surface tension for the
membrane. Different surface tensions inN-varied DPD are then
realized by applying different sets of UCD and LCD, and their
influence on the budding dynamics will be discussed in section
IIIC.

In our simulation, the elastic properties are computed in a
32 × 32 × 36rc

3 box (including two 2rc-thick layers of wall)
with an equilibrated single-component bilayer, while the budding
and fission courses take place in a 50× 50 × 74rc

3 box
(including walls) wherein the boundary effects on the large shape
deformation are diminished. Previous researches have reported
all of the details of calculating the properties of the elastic mem-
branes, for example, surface tension,36-37 bending modulus,24-25

diffusion coefficient,36 and so forth. Here, we only give a brief
description of the calculation procedure.

The surface tensionσ of a bilayer is directly related to the
three diagonal componentsPxx, Pyy, andPzz of thez-dependent
local pressure tensorP(z) by

where the integration is taken over the whole system except
the two 2rc-thick layers of frozen water. To determine the
pressure tensor profile along thez axis, we partition the
simulation box into layers (denoted byL(z)) parallel to the
membrane and of equal thickness∆z ) rc/8. Thez coordinate
of layerL(z) begins fromz and ends atz + ∆z. Then the local
pressure tensor is given as

The first term is the kinetic contribution from all of the particles
lying in layerL(z). In the second term,Lx andLy are the system

TABLE 1: Determination of Surface Tension on the Final Mophologies of Individual Domains (kcA ) 3.0kBT)

bending rigidity

interface tension
(kBT/rc

2)
line tension

parameter (a)
kcA/kcB ) 3.0/0.0

κA/κB ) 2.34( 0.27kBT/1.67( 0.22kBT
kcA/kcB ) 3.0/1.5

κA/κB ) 2.34( 0.27kBT/1.98( 0.24kBT

0.82( 0.06
UCDL/LCDL ) 1.87/0.50

50.0 rupture rupture

40.0 rupture flat B phase
0.055( 0.018

UCDL/LCDL ) 2.19/0.44
50.0 rupture curved B phase

40.0 curved B phase curved B phase
-0.23( 0.05

UCDL/LCDL ) 2.13/0.50
50.0 budding, pinched off by cleavage budding, pinched off by cleavage

40.0 budding, pinched off through
hemifission intermediate

budding, pinched off through
hemifission intermediate

TABLE 2: Determination of Surface Tension on the Final Mophologies of Individual Domains (kcA ) 0.0kBT)

bending rigidity

interface tension
(kBT/rc

2)
line tension

parameter (a)
kcA/kcB ) 0.0/0.0

κA/κB ) 1.67( 0.22kBT/1.67( 0.22kBT
kcA/kcB ) 0.0/1.5

κA/κB)1.67( 0.22kBT/1.98( 0.24kBT

0.91( 0.05
UCDL/LCDL)1.87/0.37

50.0 rupture rupture

40.0 rupture rupture
0.33( 0.03

UCDL/LCDL)2.00/0.37
50.0 curved B phase rupture

40.0 curved B phase flat B phase
-0.013( 0.008

UCDL/LCDL)1.87/0.50
50.0 budding, pinched off by cleavage budding, pinched off by cleavage

40.0 budding, pinched off through
hemifission intermediate

budding, pinched off through
hemifission intermediate

σ ) ∫0

Lz [Pzz(z) - 1
2

(Pxx(z) + Pyy(z))]dz (11)

P(z) ) ∑
i∈L(z)

mivi X vi -

∑
n [ 1

nLxLy∆z
∑

j
∑
(k,l)

(∇jk
æ(n) - ∇jl

æ(n)) X r jk jl
f(zjk

,zjl
,z)] (12)
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box dimensions alongx and y directions, respectively.æ(n)

denotesn-body potential. The summation overj includes all of
the interactions involvingn beads, and (k,l) means summing
over all possible bead pairs in then-body interactionj. The
weight functionf(z1, z2, z) is defined by

whereθ is the Heaviside function withθ(z) ) 0 for z < 0, θ(z)
) 1 for z > 0, andθ(z) ) 1/2. The weight functionf(z1, z2, z)
serves to distribute the summand in the second term of eq 12
averagely among the layers betweenjk and jl.

The chain moduluskc reflects the bending rigidity of
membranes. Lipids with largerkc constitute a more rigid
membrane. So, we usekc to indicate the membrane rigidity in
most parts of the paper. In Tables 1 and 2, we only present
several bending moduliκ, and they are estimated by the simple
relation κ ) Kl2/48, wherel is the membrane thickness, and
the stretching modulus of the membraneK is defined as

Here,A is the projected area per lipid, andA0 is the projected
area of a lipid when the surface tension is zero. The linear
relation holds only whenA is close toA0.

The lateral diffusion coefficients of lipids in the membrane
are calculated in NVT ensemble, because the addition and
deletion operations inN-varied DPD may unphysically disturb
the diffusion behaviors of the lipids which cross the boundary.

Equation 14 shows how to calculate the lateral diffusion
coefficient of lipids DL. The variable r ||(t) is the lateral
component of the lipid positionr (t), andNL is the lipid number
in the membrane.

C. Validation. Figure 1b shows a snapshot of an equilibrated
membrane patch composed of HT3 with kc ) 3.0kBT and lipid
density criteria UCDL) 2.19 lipids/rc

2 and LCDL) 0.44 lipids/
rc

2 (UCDL and LCDL are area density values in one monolayer),
in a 32× 32 × 36rc

3 box. The average equilibrium number of
lipid molecules is then set to be 2510.5, and surface tensionσ
) (0.055( 0.018)kBT/rc

2. The instant lipid number is 2492 in
the snapshot. We present in Figure 2 the time evolutions of
bead numbers of each component in systems with the same force
field parameters and boundary conditions as those in Figure
1b. It shows that the fluctuating range of the equilibrium water-
bead number in a system initially filled with dense water phase
overlaps with that of a sparsely filled system. Similarly, the
number of lipid molecules drops sharply to the equilibrium range
if the initial value is overestimated but rises in the same manner
in the case of low value at the beginning. The two insets give
an enlarged view of the bead number evolutions before
equilibrium and show that the final deviations of water and lipid
molecules from their equilibrium values are less than 0.25%
and 2%, respectively.

Each set of UCDL and LCDL defines an equilibrium lipid
density in the membrane, which further determines the surface

tension. To choose a set of UCDL/LCDL for the bud formation,
one must ensure that the equilibrium surface tension under the
chosen UCDL/LCDL is close to zero, a condition that budding
could take place (less than 0.01 mN/m2).17 In addition, UCDL
and LCDL should not be chosen to be too far apart. The
membrane needs to relax to an equilibrium state quickly. On
the other end, one has to make the two values not so close to
each other as to raise the temperature by the frequent adding
and deleting operations. Although the UCDL and LCDL differ
by a factor 5, this only occurs at a narrow boundary, which is
a small portion of the membrane. Also, the molecular density
of the main body of the membrane keeps constant in the
simulation, which means the compressibility of the membrane
is rather small.

Figure 3 indicates the fluctuations of the total momenta along
the three axes. The exchange of beads with the environment
intensifies the noise of momentum fluctuation in each direction
but does not result in cumulative deviation from zero. The
fluctuations ofx andy momenta reveal the overall motion of
the whole system. Because of the quasi-periodic boundary
conditions, the centers of mass of lipids and water beads drift
randomly in the directions parallel to the membrane. In contrast,
the overall motion along thez axis is limited by the solid
boundary conditions, leading to a frequently vibrating momen-
tum.

D. Initial Conditions for Budding and Fission. After a
single-component (labeled as A) membrane equilibrates under
the given boundary conditions, the budding and fission process
is initialized by relabeling the lipids within a circular domain
as a B component. Although the scattered lipids are observed
to aggregate into floating domains if the B component is
relabeled randomly, we do not use this strategy for domain

Figure 2. Evolutions of the numbers of water beads (NW) and lipid
molecules (NL). The two insets enlarge the number evolutions before
equilibrium and show the deviations of instant water and lipid molecules
from their equilibrium values.

f(z1, z2, z) ≡

{θ(z1 - z)θ(z + ∆z - z1) for z1 ) z2

1
z2 - z1

∫z1

z2 θ(z′ - z)θ(z + ∆z - z′)dz′ for z1 * z2} (13)

σ ) K(A - A0

A0
)

DL ) lim
t f ∞

∑
i

[r ||(t) - r (0)]2

4NLt
(14)
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formation because domains may drift across the boundary where
the addition and deletion operations may cause unexpected
results. All of the parameters for component A remain the
same before and after relabeling. The radius of the domain
labeled in the upper leaflet is 1rc larger than that of the
domain labeled in the lower leaflet, which creates the initial
perturbation that promotes the lipids of B component moving
toward the upper membrane side with the larger domain. This
strategy is necessary especially for large domains, where the
membrane undulations would significantly reduce the chance
of the overall one-sided departure of B domain from the
membrane plane. Thus, constriction of the interface between
component A and component B will lead to wrinkling of the
domain, instead of budding, if the domain sizes within the two
leaflets are initialized equally. Normally, great computational
costs are required in such a case before the domain evolves
into a configuration which favors one-sided bending over
wrinkling. So the 1rc difference in radius is a trick to reduce
the computer load and serves to facilitate the onset of the
budding process.

III. Results and Discussion

A. Budding and Fission of a Single Domain.Figure 4 shows
a typical process of budding from a flat, circular domain and
subsequent fission into a vesicle in a 50× 50× 74rc

3 box. The
parametera is set to be 40.0 in eq 9. The boundary condition
UCDL/LCDL ) 2.13rc

-2/0.50rc
-2 with chain moduluskcA )

3.0kBT determines the surface tensionσ ) (-0.23( 0.05)kBT/
rc

2 for a single-component membrane. The surface tension here
is slightly negative, but still close to zero, and we will discuss
it further in section IIIC. Initial domains composed of component
B with kcB ) 3.0kBT are labeled 11.5rc for the upper monolayer
and 10.5rc lower in radius (Figure 4a,a′), which creates a
perturbed upward translation of the entire domain. As the line

tension drives the constriction of the interfacial length around
the domain edge, the domain bends up into a cap-shaped bud
(Figure 4b,b′) and further a tubular bud (Figure 4c,c′). The
budding process then continues with the formation of a
constricted neck (Figure 4d,d′) and finally ends with the severing
of the neck and the separation of a vesicle from the mother
membrane (Figure 4e,e′). The whole process can be divided
into five stages corresponding to the bud morphologies in the
five snapshots in Figure 4, namely, the flat domain, the cap-
shaped bud, the tubular bud, the bud with a constricted neck,
and the vesicle. Here, the formation of a tubular bud is a
particular phenomenon that is absent from the continuum
theories. It probably arises from the effect of membrane
thickness. Experiments of budding dynamics on a multi-lamellar
tube where the area-to-volume limit is eliminated also confirm
the existence of a tubular bud intermediate.12 The tubular bud
in Figure 4 lasts approximately 5000∆t. We will discuss in
section IIID that, when supplemental lipids of B component
float around the object domain, the bud grows longer and its
life span is elongated.

All of the energy changes pertinent to the B component are
calculated from the conservative interactions and are presented
in Figure 5. As the domain deforms out of the membrane plane,
the interfacial energy arising from the line tension around the

Figure 3. Fluctuations of total momenta along thex, y, andz axes.N
is the instant total number of beads in the system, and (kBT)1/2 is the
average velocity along any axis.

Figure 4. Snapshots of budding and fission of a single domain with
t ) (a) 0∆t, the flat domain (b) 11 500∆t, the cap (c) 26 000∆t,
the tubular bud (d) 34 000∆t, the bud with a constricted neck,
and (e) 40 000∆t, the vesicle and (a′)-(e′) their corresponding sliced
images.
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domain decreases until the bud is pinched off, which occurs
after around 33 000∆t (Figure 5a). The nonzero residue value
of the interfacial energy after vesiculation is attributed to the
interactions between A lipids and several remaining individual
B lipids that have detached from the domain and are left in the
mother membrane. Figure 5b shows a rise of the bulk energy,
which only includes B-B interactions. To some extent, it is a
measure of the domain’s bending energy. The monotonic
increase of the bulk energy over increasing mean curvature
throughout the budding process suggests that the spontaneous
curvature introduced by the unequal domain sizes in the two
leaflets is not significant. In Figure 5c, the surface energy rising
from the domain-water interactions remains constant at the
early time but, beyond our expectation, begins to increase after
about 26 000∆t. We will discuss the transition below. The total
domain energy in Figure 5d which is the summation of the three
kinds of energy in Figure 5a-c falls steadily. It demonstrates
the competition between the interfacial energy and the bending
energy during the budding process, as predicted in the elastic
theory of membrane.4,5,17 In the budding case discussed here,
the decrease in the interfacial energy between component A
and component B exceeds the gain in the bending energy and
the domain-water surface energy and behaves as the driving
force inducing the budding process.

Both Figure 5a and Figure 5c exhibit a clear transition around
25 000∆t. Inspection of the budding process shows that a tubular
bud with approximately equal radii on the top and at the root
(Figure 4c,c′) forms around the transition point. This is not co-
incident. We will show here that the formation of a tubular bud
is responsible for the transition in Figure 5a, and we will show
in the next paragraph that the tubular configuration also
determines the transition in Figure 5c. In Figure 5a, the
interfacial energy, which is proportional to the interfacial length
between the lipid components, A and B, decreases slowly with

time in a roughly linear manner before the formation of a tubular
bud. However, after the transition point, it falls with a larger
slope, indicating that an additional barrier is present in the early
stage of budding. The time evolutions of the bud morphology
in Figure 6 show the bud reaches its tallest configuration at the
transition point. Thus, we infer the obstruction stems from the
hydrodynamic drag force. The hydrodynamic drag force is an
energy-dissipating force only exerted on a moving or deforming
object in fluids and originates from the friction between the
object and the fluid, the local relative velocity and the
pressure of the fluid around the object.38 As the bud rises from
a flat domain to an upright configuration, it has to push away
the water above it and near its root and therefore bears the
relative velocities to the water both at the top and at the root.
So the hydrodynamic drag forcesfD1 and fD2 (Figure 7) in the
horizontal and vertical directions, respectively, exert on the
domain until the bud grows to the tallest shape at the transition
point. In the succeeding deformations, only the constriction of
the neck continues, but the bud no longer grows taller. So,fD2

disappears, andfD1 is limited to the neck region, leading to the
acceleration of constriction of the domain edge in the late
budding stage.

As for Figure 5c, we make a crude estimation to explain the
transition in the domain-water surface energy (proportional to
the surface area) by assuming that the bud is a part of a perfect
spherical surface and that a planex1d distant from the inner
surface conserves the area density during the budding process,
with 0 < x1 < 1 andd the bilayer thickness (Figure 8a). So the
area of the plane keeps constant throughout.

R0 denotes the initial radius of the plane when it is flat,r is the
instant radius of the spherical surface where the constant-area

Figure 5. Evolutions of (a) interface energy originating from the line tension between the two lipid components, (b) energy within the domain
bulk, a measure of the bending energy, (c) domain-water surface energy, and (d) total energy of B domain, equal to the summation of the energies
in (a)-(c).

2πrh ) πR0
2 (15)
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plane lies during budding, andh is the height of the curved
plane. The domain-water surface areaS can then be
estimated as

whereS0 is constant and equal to 2πR0
2 + 2πx1

2d2 + 2π(1 -
x1)2d2. This equation reflects the dependence of the domain-
water surface area on the bud curvature (1/r). Since the lipid
densification causes the rise of the pairwise interactions, it is
valid to further limitx1 to the range 0∼ 1/2. Figure 8b shows
the dependence indicated by eq 16. The surface area decreases
gently as the domain curves up, until a hemispherical config-
uration is formed withr ) x2R0/2. Afterward, we observe a
sharp increase in the surface area when the domain edge
continues to constrict. However, the assumed constant-area plane
is rarely present in simulation. Actually,x1 fluctuates, and the
bud hardly keeps in the spherical surface. So the gentle decline

before the transition is concealed in Figure 5c by the large
fluctuations when the bud curvature is small, but the rising
tendency is still observable at the late budding stage when the
bud curves highly.

B. Effects of Line Tension, Bending Modulus, and Domain
Size.We examine the roles of line tension and bending modulus
in the budding process. The results in Figure 9 are obtained
from a series of simulations of two-component membranes with
varied line tension parametera and kcA ) kcB ) 3.0kBT. We
use the period from the beginning to the point when the
interfacial length drops to zero as a measure of the lifetime of
a bud or budding duration. Within our expectation of the
budding induced by the intramembrane domain,4,5 the increasing
line tension shortens the budding duration effectively. The
transitions in the interfacial length between lipid components,
A and B, are also observed in Figure 9a, except the curves with
considerably high line tensionsa ) 60.0 and 65.0, where the
effects of the hydrodynamic drag become negligible. Combining
both Figure 9a and Figure 9b, we gain the same observation as
in Figure 6 that the bud evolves to the tallest shape when the
transition occurs, and afterward, the interface begins to constrict
faster.

Figure 10 illustrates the influences of the line tension and
bending modulus on the budding dynamics in systems withkcA

) 3.0kBT and variedkcB. Note that here the bending modulus
of the membrane is characterized by the chain modulus, since
the lipids with larger chain modulus constitute a harder
membrane. The budding durations of all domains decline
significantly over the increasing line tension. However, the
case becomes more complicated for the role of bending
modulus. In the low line tension range, the budding process is
shortened askcB increases from 0 to 1.5kBT (Figure 6a), but
when the chain modulus of lipid B rises from 1.5kBT to 4.5kBT,
budding is almost slowed by one time (Figure 10). In contrast,
in the case of high line tension, the budding process is not
significantly affected by the bending modulus. Here, we believe
that the bending modulus actually incorporates several factors
which may affect budding. For a very soft membrane, the
relatively large thermal fluctuations prevent the disturbance
induced by the driving force at the domain boundary from
transferring effectively to the central domain region, so the
budding process is considerably delayed. However, if the
bending modulus becomes larger than a certain value above
which the thermal fluctuations are not important, then the whole
process is elongated due to the raised dominance of bending
energy.

We present the effects of the initial domain sizeR0 on budding
dynamics in Figure 11, obtained from the systems where UCDL/
LCDL ) 2.13rc

-2/0.50rc
-2 and kcA ) kcB ) 3.0kBT. The

simulations on both low and high line tensions reveal a quadratic
domain-size dependence of budding duration. The results agree
with the fluid character of the lipid membrane and satisfy eq
17 if we ignore the interactions between domains or between
individual lipids and the domain.

DL stands for the lateral diffusion constant of individual lipids.
C. Surface-Tension Controlled Budding.We have men-

tioned in section II that the surface tension of the membrane is
related to the UCDL and LCDL which control the average
projected area per lipid. In previous simulations, UCDL/LCDL
) 2.13rc

-2/0.50rc
-2 andkcA ) 3.0kBT are adopted, defining a

surface tension around-0.23kBT/rc
2. The minus indicates the

Figure 6. Evolution of bud morphologies from the domains with
different bending moduli (a ) 40.0). The chain modulus of lipid
component B,kcB, is used to measure the bending modulusκ. A larger
chain modulus indicates a harder membrane. (a) Evolution of the
interfacial energy, which is proportional to the interfacial length between
lipid components A and B. (b) Evolution of bud height, indicating that
the buds reach the tallest configuration at the transition point of their
corresponding interfacial energy curves in (a).

S) Sin + Sout ≈ 2π(r - x1d)(h - x1d) +
2π(r + (1 - x1)d)(h + (1 - x1)d)

) S0 + 2π(1 - 2x1)d(r +
R0

2

r ) (16)

t ∼ R0
2

DL
(17)
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normal stress is smaller than the lateral stress in the system.36

That is, each spot on the membrane repels its surrounding area,
so the membrane is not strained. Previous theory predicts that
buds only exist when the surface tension is less than 0.01 mN/
m2, corresponding to an almost tensionless membrane.17 How-
ever, it is impossible for DPD simulation to generate such a
small surface tension in a controlled way. By adding one lipid
in each monolayer, the surface tension would fluctuate from
0.05kBT/rc

2 to -0.05kBT/rc
2 in the simulation with typical

parameters. We have tried our best to generate membranes with
a surface tension close to zero. Often it went to slightly negative.
We further checked in a single component bilayer, with such
slightly negative surface tension it is stable and no buckling
occurred (Figures 1a and 4a), so the budding is not induced by
pushing the membrane at the boundary. We expect that the finite
thickness and curvature elasticity of the lipid bilayer prevent it
from buckling. Previous DPD simulations have generated stable
bilayer membranes with even more negative surface tensions
(up to-4kBT/rc

2).22,23Therefore, we believe the slightly negative
value of the surface tension will not cause any serious problem
in the study of the membrane evolution.

In this section, we change UCDL and LCDL values, and
investigate the effect of surface tension on budding. Results in
Table 1 are generated from the simulations where the lipids in
the mother membrane have the chain moduluskcA ) 3.0kBT,
and results in Table 2 have the chain modulus fromkcA )
0.0kBT. These data agree with the early results of the surface-
tension dependence investigated by a Monge description of the
membrane.17

The membrane tends to rupture in the region of highly
positive surface tension, wherein the membrane patch is tightly
strained and each spot on the bilayer has a tendency to pull in
the surrounding area. It is analogous to a vesicle with extremely
high interior pressure. The fact that the ruptures are always
initialized along the domain boundary reveals the relatively
larger line tension between the lipid components, A and B,
because of their strong repulsive interactions. Indeed, we observe
vesicular explosions experimentally when all of the domains

coalesce into a single one, but the interfacial energy (line
tension) is still high.

In the intermediate tension region, the domain exhibits small
curvature or keeps flat, with neither rupture nor budding
followed. This state is similar to a spherical vesicle, where
domains or caps are floating on the mother membrane, but
further deformations are confined by the low area-to-volume
ratio.9-11 Comparing the last two columns of both high and
intermediate tension regions in Tables 1 and 2, we find that
enlarging the contrast in the bending moduli of the coexisting
phase has an equivalent effect to increasing the line tension. In
Table 1, as the chain modulus of the domain is raised, the
tendency to rupture is remarkably hindered. Likewise, the
domain is prone to curve when the bending moduli of the two
phases get closer in Table 2. Thus, it can be concluded that the
difference in the chain modulus contributes to the structural
dissimilarity of the lipid components, or rather the immiscibility
of the coexisting phases.

When the surface tension becomes slightly negative but still
close to zero, the budding process is induced by the line tension.
In this region, the lipids repel strongly against theirs neighbors,
resembling the vesicles on which a sufficient excess area is
present and produces a pushing effect on surrounding area.7,8,12

Note that, in the third region in both Table 1 and Table 2, the
budding events take place no matter whether the budding phase
is more rigid than the mother membrane or not. This is in
agreement with the experiments,10,11 demonstrating that the
budding process is determined by the line tension but not by
the specific properties, for example, bending moduli, of the two
phases.

In addition, two fission pathways are observed at the late
stage of budding, as reported previously in simulations21 of a
self-assembled vesicle. One includes the rupture of the neck
and the subsequent resealing of the two separated membranes
(Figure 12a). In the second pathway, the membrane remains
impermeable to the water and undergoes hemifission intermedi-
ate, during which the interior monolayer self-fuses while the
exterior one maintains integral (Figure 12b). This is a validation

Figure 7. Schematic representations of the hydrodynamic drag forcesfD1 andfD2 exerted on the bud. The A phase is colored by black, and the B
phase is gray.

Figure 8. (a) Schematic representation of the domain-water surface energy (area) transition by assuming a planex1d distant from the inner
surface conserves the area density. (b) Dependence of the domain-water surface areaSon the bud curvature (1/r). S0 and 2π(1-2x1d) are constant.
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that the fission mechanism is not altered by the open membrane
morphology and the boundary conditions inN-varied DPD.

We compare the budding durations, in Figure 13, of two series
of systems imposed with UCDL/LCDL) 2.13rc

-2/0.50rc
-2 (σ

) -0.23kBT/rc
2) and 1.75rc

-2/0.63rc
-2 (σ ) -0.16kBT/rc

2),

respectively. The former provides more excess areas than
the latter and consequently facilitates the out-of-membrane
deformation. However, the effect of surface tension is not
significant in the low and high line tension regimes. The duration
times both decrease with the increase of the line tension.

D. Tubular Bud Intermediate. The tubular bud (Figure
4c,c′) in our preceding simulations was also experimentally
observed on tubular vesicles with diminished encapsulated

Figure 9. Evolution of bud morphologies in the membranes with
different line tensions (kcA ) kcB ) 3.0kBT). (a) Evolution of the
interfacial energy, which is proportional to the interfacial length between
the two lipid components A and B. (b) Evolution of bud height,
indicating that the buds reach the tallest configurations at the transition
point of their corresponding interfacial energy curves in (a).

Figure 10. Dependence of budding duration on line tension and
bending modulus. The bending modulus of the membrane is character-
ized by the chain modulus. A larger chain modulus indicates a harder
membrane.

Figure 11. Dependence of budding duration on domain size. The solid
line and the dashed line are quadratic fittings to the simulated data
according to eq 17.

Figure 12. Fission pathways: (a) high line tension leads to cleavage,
(b) low line tension leads to hemifission intermediate.

Figure 13. Dependence of budding duration on line tension with
different surface tensions.
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volume constraint and remained stable throughout the obser-
vation period.12 The morphology may be ascribed to the
membrane thickness effect, which acts with a considerable
role in DPD and the real multi-lamellar vesicles. However,
no stable tubular buds exist in the simulations. We observe
either complete vesiculations, wherein the subsequent neck
constriction and severing reduce the interface energy between
the two lipid components by more than the gain in bending
and surface energies, or no budding, in which the line tension
is not sufficient to induce the large shape transformation. Thus,
we conclude that the experimentally observed tubular bud is
actually an intermediate but stands beyond the experimental
scale.

The lateral diffusion constantsDL,sim of simulated lipids in
the single-component membrane with different bending moduli

κ are presented in Figure 14. The inset shows the dependence
of DL,sim on chain moduluskc. AssumingDw,sim/Dw ) DL,sim/

Figure 14. Dependence of lateral diffusion coefficients of lipids on
bending modulusκ. The inset shows the dependence of the lateral
diffusion coefficients of lipids on the chain moduluskc. The sizes of
error bars are smaller than the squares.

Figure 15. Snapshots of bud-domain coalescence witht ) (a) 0∆t,
(b) 3000∆t, (c) 4000∆t, and (d) 6000∆t and (a′)-(d′) their correspond-
ing sliced images .

Figure 16. Snapshots of bud-bud coalescence witht ) (a) 0∆t, (b)
4500∆t, (c) 6500∆t, and (d) 12 500∆t and (a′)-(d′) their corresponding
sliced images.

Figure 17. Snapshots of bud-cap coalescence witht ) (a) 0∆t, (b)
3500∆t, (c) 7500∆t, and (d) 11500∆t and (a′)-(d′) their corresponding
sliced images.

N-Varied Dissipative Particle Dynamics J. Phys. Chem. B, Vol. 111, No. 21, 20075847



DL, where the subscript w denotes water and sim indicates
simulation, we map the lateral diffusion constant of lipids to
the experimental scaleDL, using the valuesDw ) 0.307rc

2/∆t
simulated on a pure water system,Dw ) 2.57× 10-5 cm2/s,39

and DL,sim ) 0.045rc
2/∆t estimated from Figure 14.DL then

equals 3.77× 10-6 cm2/s. If we take the relationt/tlip ) (R2/
DL)/(Rlip

2/Dlip), which is equivalent to eq 17, and the estimations
for the simulated domain sizeR ≈ 10rc ≈ 10 nm, the
experimental domain sizesRlip ≈ 5 µm, the lateral diffusion
constant for real lipids40,41 Dlip ≈ 8 × 10-8 cm2/s, and∆t )
0.05[m0rc

2/(kBT)]1/2 ≈ 0.25 ps (assumingrc ∼ 10-9 m and room
temperature), the mapped timetlip is around 0.1-1 s for the
budding process shown in Figure 5, a bit lower compared with
the experimental result (∼10 s).12

Three typical growth modes in the budding process have been
reported in experimental studies.12 The morphological changes
of these growth modes are conveniently reproduced byN-varied
DPD (Figures 15-17). The initial states are constructed by
joining the well-formed buds, caps, or domains together and
then evolved with UCDL) 2.13rc

-2, LCDL ) 0.50rc
-2, and

kcA ) kcB ) 3.0kBT. Figure 15 exhibits the growth of a
bud by coalescence with a flat domain. The mergence
makes the bud lean toward the direction opposing the domain
and grow even longer. The fusion of two tubular buds is shown
in Figure 16, wherein the bud tops bend oppositely to avoid
the formation of high curvature at the saddle region. In the
coalescence of a bud and a cap (Figure 17), the bud leans when
the cap merges into the root and restores to the upright
configuration afterward.

All of the three modes end with the figure of a longer bud
and show an effect to elongate the existence of tubular buds.
This inspires us with a second possible fact that contributes to
the long life span of the experimental buds besides the large-
size effect. That is, individual lipid molecules and small domains
merge into the bud continuously from all directions around the
root. So, no leaning takes place under the uniformly all-sided
collisions, but the neck constriction is effectively delayed by
the incessant coalescences.

IV. Summary and Outlook

In summary, we simulate the budding and fission dynamics
of individual domains in the flat membrane patches by altering
the boundary conditions of normal DPD and making the bead
numberN variable. The modification provides adequate excess
areas indispensable for the budding process. Advantageously,
the flexibility in controlling the boundary conditions and the
morphological simplicity intrinsic of the open, flat bilayer make
the N-varied DPD especially suitable to explore the effects of
elastic properties on budding dynamics and, at the same time,
preserve the molecular details. Five stages of budding dynamics
are classified according to the bud configurations of the
individual domain. Especially, there exists a stage of a tubular
bud in our simulation, in which the effect of the membrane
thickness cannot be neglected. Both the energy and the
morphology evolutions obtained indicate a transition in budding
dynamics when a tubular bud forms, including the rise of the
domain-water surface energy and the acceleration of constriction
of the interface between the two lipid components. The former
is out of the dramatic increase in the domain-water surface
area after the formation of a tubular bud, and the latter is
successfully explained by introducing the hydrodynamic drag
force, which is not involved in conventional equilibrium theories,
into the dynamic analysis.

In the low line tension regime, extremely high and extremely
low bending moduli are unfavorable conditions for bud forma-
tion. In contrast, in the regime with high line tension, the
budding process is not significantly affected by the bending
modulus. Afterward, the controlling role of the surface tension
that mainly originates from the area constraints is noted after
comparison among the systems imposed with different boundary
conditions. Budding is only induced in the prerequisite of
sufficient excess area and released surface tension. Finally, we
map the simulated results to the experimental scale and conclude
that the tubular bud is an intermediate in both simulations and
experiments.

However, the lipid architecture adopted here is closer to small
surfactants than actual lipids. Simulations of molecules with
longer hydrophobic tails or multiple tails can be conducted to
study the molecular structural effects and the membrane
thickness effects. Further, the domains are initialized unnaturally
in our work, which might introduce unexpected artifacts. Thus,
we suggest a larger scale simulation, in which a quench from
high temperature can be mimicked and the scattered lipids self-
aggregate into a circular domain. These works are currently
underway.
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